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ABSTRACT 
Controlled experiments, also called randomized experiments and 
A/B tests, have had a profound influence on multiple fields, 
including medicine, agriculture, manufacturing, and advertising. 
While the theoretical aspects of offline controlled experiments 
have been well studied and documented, the practical aspects of 
running them in online settings, such as web sites and services, 
are still being developed. As the usage of controlled experiments 
grows in these online settings, it is becoming more important to 
understand the opportunities and pitfalls one might face when 
using them in practice. A survey of online controlled experiments 
and lessons learned were previously documented in Controlled 
Experiments on the Web: Survey and Practical Guide (Kohavi, et 
al., 2009). In this follow-on paper, we focus on pitfalls we have 
seen after running numerous experiments at Microsoft.  The 
pitfalls include a wide range of topics, such as assuming that 
common statistical formulas used to calculate standard deviation 
and statistical power can be applied and ignoring robots in 
analysis (a problem unique to online settings). Online experiments 
allow for techniques like gradual ramp-up of treatments to avoid 
the possibility of exposing many customers to a bad (e.g., buggy) 
Treatment. With that ability, we discovered that it’s easy to 
incorrectly identify the winning Treatment because of Simpson’s 
paradox.  

Categories and Subject Descriptors 
G.3 Probability and Statistics/Experimental Design: controlled 
experiments, randomized experiments, A/B testing. 
I.2.6 Learning: automation, causality. 

General Terms 
Management, Measurement, Design, Experimentation, Human Factors. 
Keywords 
Controlled experiments, A/B testing, e-commerce, Simpson’s 
paradox, robot detection 
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1. INTRODUCTION 
Almost any questions can be answered, cheaply, quickly 

and finally, by a test campaign. And that's the way to 
answer them – not by arguments around a table. Go to 

the court of last resort – the buyers of your product 
– Claude Hopkins, Scientific Advertising (1923) 

Sir Ronald A. Fisher led the development of statistical 
experimental design while working at the Rothamsted 
Agricultural Experimental Station near London, England in the 
1920s. His work had “profound influence on the use of statistics, 
particularly in the agricultural and related life sciences” 
(Montgomery, 2005). Over 70 years later, the esoteric field has 
grown mainstream: Forbes published an article on MultiVariable 
Testing titled “The New Mantra: MVT” (Koselka, 1996). The 
article begins with the following two sentences: “If you haven't 
yet applied multivariable testing to your business, get moving. 
Whether you run a factory, a mail-order house or a hospital, it will 
probably improve your performance.” Montgomery (2005) wrote 
that “Applications of designed experiments have grown far 
beyond the agricultural origins. There is not a single area of 
science and engineering that has not successfully employed 
statistical designed experiments.”  
Toyota’s famous production system with the principle of ongoing 
hypothesis testing of improvements often requires reconfiguration 
of the work area. The fascinating story in Learning to Lead at 
Toyota (Spears, 2004) describes how ideas are continuously tested 
even though reconfigurations of the work area are expensive: “75 
[experiments]…required relocating material stores and moving 
the light curtains, along with their attendant wiring and computer 
coding. These changes were made with the help of technical 
specialists….” With software, testing new hypotheses is much 
easier; code can be modified and restored much more easily than 
physical artifacts. The web provides an unprecedented opportunity 
to evaluate ideas quickly using controlled experiments.  
Controlled experiments typically generate large amounts of data, 
which can be analyzed using statistical and data mining 
techniques to gain deeper understanding of the factors influencing 
the outcome of interest, leading to new hypotheses and creating a 
virtuous cycle of improvements. Multiple lessons learned from 
deploying controlled experiments online and analyzing them were 
documented in the Practical Guide to Controlled Experiments on 
the Web (Kohavi, et al., 2007) and its longer version (Kohavi, et 
al., 2009). In this follow-on paper, we focus on pitfalls learned in 
the last three years, and especially in our last year, as we ramped 
up and ran numerous controlled experiments across multiple web 
sites at Microsoft.  
The goal of the KDD industrial track is to “highlight challenges, 
lessons, and research issues arising from deploying KDD 
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technology.” This paper focuses on important lessons, described 
as pitfalls, and related challenges we have identified. The pitfalls 
are all “real” in the sense that we experienced them and spent 
significant time working around them and documenting them so 
that you can avoid them.  
The paper is organized as follows. Following a brief overview and 
definitions in Section 2, we review issues with choosing an OEC, 
the Overall Evaluation Criterion for experiments in Section 3. In 
Section 4 we highlight that computation of confidence intervals 
when reporting percent effects is not accurate and show how to 
compute these for combinations of metrics. In Section 5 we point 
out that for families of metrics the standard statistical formulas for 
computing variances fail to give the correct result because the 
independence assumption is violated. We recommend using 
Bootstrap, which is compute-intensive. In Section 6 we warn 
readers about occurrences of Simpson’s paradox, a common 
problem when ramping-up experiments. Sections 7 warns about 
robots and proposes a novel way to evaluate whether robots that 
impact experimental results. Sections 8 warns about audits, 
instrumentation and controlling all differences. We conclude the 
paper with a short summary. 

2. CONTROLLED EXPERIMENTS 
In the simplest controlled experiment, often referred to as an A/B 
test, users are randomly exposed to one of two variants: Control 
(A), or Treatment (B), shown in  
Figure 1. This section mirrors the terminology and basic 
hypothesis testing overview as provided in Controlled 
Experiments on the Web: Survey and Practical Guide (Kohavi, et 
al., 2009) where additional motivating examples and multiple 
references to the literature are provided. 
The terminology for controlled experiments varies widely in the 
literature. Below we define key terms used in this paper and note 
alternative terms that are commonly used.  
Overall Evaluation Criterion (OEC) (Roy, 2001). A quantitative 
measure of the experiment’s objective. In statistics this is often 
called the Response or Dependent Variable (Mason, et al., 1989; 
Box, et al., 2005); other synonyms include Outcome, Evaluation 
metric, Performance metric, or Fitness Function. Experiments 
may have multiple objectives and a scorecard approach might be 
taken, although selecting a single metric, possibly as a weighted 
combination of such objectives is highly desired and 
recommended (Roy, 2001 p. 50). A single metric forces tradeoffs 
to be made once for multiple experiments and aligns the 
organization behind a clear objective. A good OEC should not be 
short-term focused (e.g., clicks); to the contrary, it should include 
factors that predict long-term goals, such as predicted lifetime 
value and repeat visits.  
Variant. A user experience being tested by being exposed to one 
of several variants, which include the Control and one or more 
Treatments. 
Experimental Unit. The entity over which metrics are calculated 
before averaging over the entire experiment for each variant. 
Sometimes called an item. The units are assumed to be 
independent. On the web, the user is a common experimental unit. 
It is important that the user receive a consistent experience 
throughout the experiment, and this is commonly achieved 
through randomization based on user IDs stored in cookies. 
Throughout this paper, we will assume that randomization is by 
user. 

Null Hypothesis. The hypothesis, often referred to as H0, that the 
OECs for the variants are not different and that any observed 
differences during the experiment are due to random fluctuations. 
Confidence level. The probability of failing to reject (i.e., 
retaining) the null hypothesis when it is true.  
Power. The probability of correctly rejecting the null hypothesis, 
H0, when it is false. Power measures our ability to detect a 
difference when it indeed exists.  
A/A Test. Sometimes called a Null Test. Instead of an A/B test, 
you exercise the experimentation system, assigning users to one of 
two groups, but expose them to exactly the same experience. An 
A/A test can be used to (i) collect data and assess its variability 
for power calculations, and (ii) test the experimentation system 
(the Null hypothesis should be rejected about 5% of the time 
when a 95% confidence level is used). 

100 %
Users

 
 

Figure 1: High-level flow for an A/B test  
Standard Deviation (Std-Dev). A measure of variability, 
typically denoted by ߪ.  
Standard Error (Std-Err). For a statistic, it is the standard 
deviation of the sampling distribution of the sample statistic 
(Mason, et al., 1989). For a mean of ݊ independent observations, 
it is ߪො/√݊ where ߪො is the estimated standard deviation. 
Statistical Significance. To evaluate whether the Overall 
Evaluation Criterion differs for user groups exposed to Treatment 
and Control variants, a statistical test can be done. If the test 
rejects the null hypothesis, which is that the OECs are not 
different, then we accept a Treatment as being statistically 
significantly different. We will not review the details of the 
statistical tests, as they are described very well in many statistical 
books (Mason, et al., 1989; Box, et al., 2005; Keppel, et al., 
1992). 

3. The Overall Evaluation Criterion 
To run a controlled experiment, one needs to decide on the OEC, 
or the Overall Evaluation Criterion, the key metric that is going to 
be compared. For web sites, our recommendation is to tie that 
metric to a long-term goal, such as using customer lifetime value. 
For example, a retail site might want to optimize not just short-
term revenues, but also for long-term indicators of loyalty and 
increasing wallet share: increase in repeat visits and purchases, 
signing up for e-mails, and purchasing from multiple departments. 
Sometimes, when getting the true metric is hard, sites will use a 
surrogate metric as the following example shows. 

50% 50%
Users Users

Control :
Existing System

Treatment :
Existing System 
with Feature X 

Users interactions instrumented , 
analyzed & compared

Analyze at the end of the 
experiment 
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3.1 Office Online Example 
Microsoft’s Office Online site (http://office.microsoft.com) had 
the following design (Control), shown in Figure 2. 
The areas with red around them are “revenue generating links,” 
which had a certain probability of leading to a sale of the Office 
suite. Tracking the actual purchase was hard, so the team settled 
on a surrogate OEC, which was “clicks on revenue generating 
links.” They ran a controlled experiment, where the new treatment 
had a new design as shown in Figure 3. 

 
Figure 2: The Control 

 

 
Figure 3: The Treatment 

The team thought that the new design would win on the OEC: 
clicks on revenue generating clicks, marked in red.  However, the 
new design had 64% fewer clicks on those links. The experiment 
by itself was useful because the team thought their new design 
would perform better on OEC, and they now had to adjust their 
intuition, so it was a good learning experience. 
However, there is a serious flaw with the OEC: clicks are a 
reasonable approximation to sales only if the conversion rate from 
click to purchase is the same in the old and new designs. The new 
version had the price shown on the page, and it sent more 
qualified users who are willing to spend $149.95, thus having a 
significantly higher conversion rate.  

Another common problem with OECs that we have seen is a local 
focus. For example, measuring the click-through rate on a small 
area of the page, ignoring the impact on other areas of the page. 
A final example is picking an OEC like “time on site.” It may 
initially seem like a good OEC, but we have examples where a 
new feature was introduced that was so hard to use that it slowed 
users’ effectiveness, growing their time on the site, but for the 
wrong reason. 
The litmus test for an OEC should be: is it possible to do 
something simple (sometimes clearly dumb) and wrong that will 
improve the OEC but not meet the real business goal? If that is 
easy, how do you know that your complicated feature is not 
improving the OEC because it has a small “dumb” component? 
Here is why the above OECs do not pass the litmus test. 

1. Office online click-throughs on revenue generating 
links. The OEC assumes that the conversion rate from a 
click to purchase is fixed. One can create a link labeled 
“Free download for 60 days” that will do wonders to the 
OEC, but the conversion will be much lower than a 
“Buy for $149.95” link. Is this ultimately going to 
generate more revenues? Unclear. 

2. Click-through on a small area of the site (e.g., slot). It’s 
easy to make an area stand out by making it a bold, with 
a different background, maybe even flashing. More 
people might click in the short term, but what about the 
whole-page click-through rate? What about long-term 
value? 

3. Time on site. By making things harder to find or making 
navigation harder, users might stay longer on the site, 
but leave frustrated. 

 

Pitfall 1:  Picking an OEC for which it is easy to beat the 
control by doing something clearly “wrong” from a 
business perspective. 

 
We want to caution against overcorrecting here. Sometimes 
picking a simple OEC is a good way to start experimenting, 
without worrying about the perfect OEC. When the MSN home 
page wanted to display an additional ad, we helped pick a simple 
OEC that looked at immediate revenue impact due to reduced 
click-throughs on the page, ignoring long-term effects such as slot 
blindness. The idea was negative even under this simple and 
conservative OEC, so it would have been worse under more 
sophisticated versions (Kohavi, et al., 2009). 

3.2 Support Sites are Challenging 
Many support sites provide an explicit feedback mechanism in the 
form of inline and/or pop-up surveys that allow users to rate their 
experience in terms of factors such as relevance and usability. 
These ratings are problematical. Such surveys are subject to non-
response bias, wherein the sample of respondents is not 
representative of the total user population. It is well known that 
users with negative attitudes towards the company or product, or 
who have had an unsatisfactory experience, are more likely to 
respond to such surveys.(Hill, et al., 2007). Hill and his co-authors 
note that the minimum response rate needed to correct for non-
response bias is 30%(p. 84). Given that the observed response 
rates for online support sites we have worked with is in the low 
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single digits, we assert that online surveys are not a suitable 
source of input for Overall Evaluation Criteria. 
Prior research to infer user interest based on implicit actions used 
an instrumented browser, such as the Curious Browser (Claypool, 
et al., 2001). The researchers found that time spent on a page and 
the amount of scrolling on a page has a strong correlation with 
explicit interest, while individual scrolling methods and mouse-
clicks are ineffective in predicting explicit interest. Later research 
also noted that how a user exited a result or ended a search session 
is important (Fox, et al., 2005). 
Setting the OEC to time spent on page (dwell time) fails the 
litmus test noted in pitfall 1. For example, in a Microsoft health 
related site, a widget was redesigned to make health articles more 
accessible. Time spent on pages and total session time increased 
(satisfying the objective), but drilling down to the reasons, the 
new widget in the Treatment was used less often than the one in 
the Control. Users may have been more confused, thus taking 
longer to find what they need. 
We also ran an experiment on Microsoft’s support site, 
support.microsoft.com, where dwell time was the OEC. However, 
it was not clear at all whether the lower times were due to the user 
experience improving or users giving up. 
Finding a good general OEC for support sites is challenging. We 
do want to mention that limited experiments are still possible. For 
example, a particularly successful support site experiment we ran 
involved the test of a rudimentary personalization feature. The 
support.microsoft.com site contained a top center “Instant 
Answers” module with links to common support issues selected 
by the site editors. We tested a new treatment that personalized 
these links by the browser and operating system versions of the 
user’s HTTP header. The treatment performed over 50% better 
than the control on the OEC of Click-through rate, without 
decreasing the clickthrough rate for the whole page. 

4. CONFIDENCE INTERVALS 
It is useful to give a confidence interval for the difference in the 
means of the Treatment and Control in addition to the results of 
the hypothesis test. The confidence interval provides a range of 
plausible values for the size of the effect, whereas the hypothesis 
test only determines if there is a statistically significant difference 
in the means. The formula for the confidence interval for the 
difference in two means is fairly straightforward (Box, et al., 
2005). 
For many online metrics, the difference in the means is so small 
that percent change has much more intuitive meaning than the 
absolute difference. For example, for a recent experiment we ran, 
the Treatment effect for clickthrough rate was 0.00014. This 
translated to a 12.85% increase for the Treatment. The latter 
number was much more meaningful to decision makers. The 
percent difference is calculated as the delta between the means of 
the Treatment and Control divided by the mean for the Control 
times 100%. 
Forming a confidence interval around the percent change is not a 
straightforward extension of the confidence interval for the 
absolute effect. The reason is we are now dividing by a random 
quantity. The initial derivation of this interval is due to Fieller 
(1940) and the formulas are shown in Kohavi et al (2009). We 
would not want to use a log or other transformation since business 
owners may reject results that are not expressed in the same units 

they are familiar with and percent increase has a natural business 
interpretation. 
These formulas assume the covariance between the Treatment and 
Control mean is zero, which will be true in a controlled 
experiment when the randomization is carried out properly.  
OECs may be a combination of metrics, or key performance 
indicators (KPIs). This combination could be either  
1) A linear combination of metrics 
2) A nonlinear combination of metrics that have the same basis1 

or 
3) A nonlinear combination of metrics that do not have the 

same basis. 

In the first case, the mean and variance of the OEC can be 
calculated from the means and variance of the metrics using the 
standard formulas and the confidence intervals are the usual 
symmetric confidence intervals using the normal distribution. 
In the second case, one can calculate the OEC for each 
experimental unit then calculate the mean and variance of the 
OEC values across experimental units and then the confidence 
intervals. 
The third case is more challenging, but we can use Rao’s result: 
(1973 p. 387).  If the OEC is a general function of k primary 
metrics, i.e. OEC = g(X1, X2, …, Xk), and if g(.) is a totally 
differentiable function of k variables, if (X1, X2, …, Xk) 
asymptotically follow a joint Normal distribution with means μ1, 
μ2,… μk, and covariances σij, i, j = 1,…k, then the OEC will 
asymptotically follow a Normal distribution with mean g(μ1, 
μ2,… μk) and varian e  c

ଶሺܱܥܧሻ ൌ ෍෍ߪ௜௝
߲݃
߲ ௜ܺ

ߪ 
߲݃
߲ ௝ܺ

௞

௝ୀଵ

௞

௜ୀଵ

 (1)  

Provided ߪଶሺܱܥܧሻ is not zero and that g(μ1, μ2,… μk) exists. The 
totally differentiable requirement leaves out many functions 
where truncation or discretization is utilized. We also have to 
assume the sample sizes are large enough for g(X1, X2, …, Xk) to 
have a Normal distribution.  

Pitfall 2:   Incorrectly computing confidence intervals 
for percent change and for OECs that involve a 
nonlinear combination of metrics 

5. METRICS, STANDARD DEVIATIONS 
AND POWER 
To compute statistical significance for different metrics of 
interest, we need to estimate the variance of the OEC. After 
running thousands of A/A tests, we discovered that variances for 
some metric families are inaccurately estimated using the standard 
statistical formulas. Specifically, the variance for click-through 
rate (CTR), defined as (sum of clicks)/(sum of page views) for the 
Treatment or Control for the time period of the experiment was 
significantly underestimated. In these cases, we have found the 
Bootstrap method (Efron, 1993) to be an excellent way to estimate 
the variance. The bootstrap is a resampling technique with 
                                                                 
1 Two metrics have the same basis if they are calculated over the 

same experimental unit. For example, page views per user-day 
and clickthroughs per user-day have the same basis, user-day. 
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replacement where the parameter of interest is calculated for each 
sample drawn and then we calculate the variance of these 
estimates. We currently take 1000 bootstrap samples. We 
recommend that you compare the formula variance for any metric 
with the Bootstrap estimate if you are not sure the formula for the 
variance is accurate. We now routinely use the bootstrap method 
to estimate variances whenever the experimental unit used in the 
calculation of the metric is different from the one used in the 
random assignment to the variants. For example, our standard 
method of random assignment is to assign users to Treatment or 
Control using a user ID stored in the cookie. Then we will use the 
bootstrap estimate for the variance of any metric that does not 
have user as the experimental unit (e.g. clicks per user-day or 
session).  Care must be taken in the calculation of variance and 
power. The metrics may be considered in two categories: those 
where the experimental unit is the same as the randomization unit 
(referred to below as per user metrics) and those where it is not. 

5.1 Per User Metrics 
It is difficult to calculate the power for per user metrics because 
these metrics accumulate over time and most have increasing 
means and standard deviations, e.g., clicks per user and page 
views per user. A metric that is a ratio for each user (e.g. 
clickthrough rate) does not necessarily have an increasing mean 
and standard deviation, but the standard deviation of the mean 
does not decrease with the square root of the sample size as 
normally expected (Kohavi, et al., 2009). 
The best way to calculate the power for these metrics is to run an 
A/A test prior to the A/B test to get the mean and standard 
deviation for different lengths of test. One can then interpolate or 
extrapolate to get the approximate power. 

5.2 Non-Per User Metrics 
Metrics, such as those with an experimental unit of user-day or 
session, have the complication that the experimental units are not 
independent, even if the averages and standard deviations are not 
increasing. Below are three examples of non-per user metrics. 

• User-day metrics are those where user’s behavior during 
24 hour time periods are averaged, e.g. page views per 
user per day. 

• Session metrics are defined during a period of user 
activity and are separated by periods of inactivity, 
customarily 30-minutes. We can then look at metrics, 
such as clicks or page views per session. 

• Click-through rate defined for the duration of the 
experiment. Business users tend to focus on this metric, 
although we found that it to be very sensitive to robots.  

There is usually some positive correlation between experimental 
units for these metrics and sites that have more loyal customers 
(higher return rate) have higher correlations. Ignoring the 
correlations leads to underestimation of the standard deviation. 
We have been using Bootstrapping to estimate the standard 
deviation for these metrics and getting good results, validated 
through A/A tests. 
The only class of metrics where the power and standard deviation 
calculations are straightforward are conversion rates for users. For 
example, the percent of users who purchase an item or the percent 
of users who click on a link. These metrics follow the Bernoulli 
distribution when randomization is by user. 

Pitfall 3:  Using standard statistical formulas for 
computations of variance and power.  

6. SIMPSON’S PARADOX 
One of our recommendations for running online controlled 
experiments is to start an experiment with a small percentage of 
users assigned to the Treatment(s) and ramp that percentage 
(Kohavi, et al., 2007). One of the problems with ramp-up is that 
an analysis of the Control and Treatment that includes two or 
more periods with different percentages assigned to the treatment 
can be incorrect due to Simpson’s paradox (Simpson, 1951; 
Malinas, et al., 2004; Wikipedia: Simpson's Paradox, 2008). 
Table 1 shows a simple example, where a website has one million 
visitors per day, on each of two days: Friday and Saturday. On 
Friday, the experiment runs with 1% of traffic assigned to the 
Treatment, and then on Saturday that percentage is raised to 50%. 
Even though the treatment has a conversion rate that is better on 
Friday (2.30% vs. 2.02%) and a conversion rate that is better on 
Saturday (1.2% vs. 1.00%), if the data is simply combined over 
the two days, it would appear that the Treatment is performing 
worse (1.20% vs. 1.68%). 

Table 1: Conversion Rate for two days.  
Each day has 1M customers, and the Treatment (T) is better 

than Control (C) on each day, yet worse overall 

 
Friday 

C/T split: 99%/1% 

Saturday 
C/T split: 50%/50% 

Total 

C 20,000
990,000 ൌ 2.02% 5,000

5 000,00 ൌ 1.00% 25,000
1,4 090,00 ൌ 1.68% 

T 230
10,000 ൌ 2.30% 6,000

500,000 ൌ 1.20% 6,230
510,000 ൌ 1.20% 

 
There is nothing wrong with the above math. It is mathematically 
possible that ࢇ

࢈
൏ ࡭

࡮
 and that ࢉ

ࢊ
൏ ࡯

ࡰ
 while ࢇାࢉ

ࢊା࢈
൐ ࡯ା࡭

ࡰା࡮
. The reason 

this seems unintuitive is that we are dealing with weighted 
averages, and the impact of Saturday, which was a day with an 
overall worse conversion rate, impacted the Treatment more. 
Here are other examples from controlled experiments where 
Simpson’s paradox may arise: 

1. Users are sampled. Because there is concern about getting 
a representative sample from all browser types, the 
sampling is not uniform, and users with some browsers 
(e.g., Opera, Netscape) are sampled at higher rates. It is 
possible that the overall results will show that the 
Treatment is better, but once the users are segmented into 
the browser types, the Treatment is worse for all browser 
types. 

2. An experiment runs on a web site that is implemented in 
multiple countries, say US and Canada. The proportions 
assigned to the Control and Treatment vary by country 
(e.g., the US runs at 1% for the Treatment, while the 
Canadians do power calculations and determine they need 
50% for the Treatment). If the results are combined, the 
Treatment may seem superior, even though if the results 
were broken down by country, the Treatment will be 
inferior. This example directly mirrors the ramp-up 
example shown previously. 
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3. An experiment is run at 50/50% for Control/Treatment, 
but an advocate of the most valuable customers (say top 
1% in spending) is concerned and convinces the business 
that this customer segment should be kept stable and only 
1% will participate in the experiment. It is possible that the 
experiment will be positive overall, yet it will be worse for 
both the most valuable customers and for the non-valuable 
customers. 

4. An upgrade of the website is done for customers in data 
center DC1 and customer satisfaction improves. A 2nd 
upgrade is done for customers in data center DC2, and 
customer satisfaction there also improves. It is possible 
that the auditors looking at the combined data from the 
upgrade will see that overall customer satisfaction 
decreased.  

While occurrences of Simpson’s paradox are unintuitive, they are 
not uncommon, and we have seen them happen multiple times in 
real life.  Possible solutions include: (i) paired t-tests where each 
pair (Control, Treatment) is chosen from a period where the 
proportions were stable; and (ii) using weighted combinations.  
The simplest solution, which we use, is to throw away the data 
from the ramp-up period, which is usually short relative to the 
experiment. 

Pitfall 4:  Combining metrics over periods where the 
proportions assigned to Control and Treatment vary, or 
over subpopulations sampled at different rates 

7. ROBOTS IMPACT RESULTS 
Web sites are accessed not only by human users but also by robots 
such as search engine crawlers, email harvesters and botnets. The 
traffic generated by robots is not representative of the human 
population (e.g., excessive clicks and page views in patterns that 
differ from human patterns) and can cause misleading results. 
Robots should be excluded from experiments focused on 
improving the human experience whereas humans should be 
excluded from experiments focused on the robot experience (e.g., 
for Search Engine Optimization). In practice, however, identifying 
robots is difficult (Tan, et al., 2002; Kohavi, et al., 2004; 
Bomhardt, et al., 2005; Bacher, et al., 2005; Wikipedia: Internet 
bot, 2008; Wikipedia: Botnet, 2008). 
For example, in an experiment on the MSN portal, where a small 
change was done to only one module, we found that the click-
through rate on several areas of the page were statistically 
significantly different. Since the change was small and localized 
to one area of the page, we were surprised to see significant 
differences in unrelated areas. Upon deeper investigation, we 
found that the differences were caused by robots that accept 
cookies and execute JavaScript. Executing code in JavaScript is 
one of the most common characteristics that separate humans 
from robots, and some web analytic vendors even claim that page 
tagging using JavaScript is so robust that no additional robot 
detection should be done. Yet in this case these robots were 
executing JavaScript “onclick” events, which fire on the MSN 
portal when users click a link on a web page, at extremely high 
rates of about 100 per minute for durations of 2.5 hours. 
Robots implemented by automating browsers such as Internet 
Explorer or Firefox support all of the functionality of those 
browsers including cookies and JavaScript. Furthermore, when 
such a robot runs from a machine also used by a human, both the 
robot and human will typically share the same cookies. If the user 

identity is stored in a cookie (very common), then the user appears 
to be schizophrenic, acting like a human at certain times and like a 
robot at others. 
For experimentation, we are primarily concerned with removing 
robots that cause a bias. If the traffic from a robot is distributed 
across the variants of an experiment in an unbiased way, then the 
presence of the robot adds noise to the data and reduces the power 
of the experiment but does not invalidate the results. Robots that 
are seen as multiple unique users due to resetting their cookies or 
running from multiple machines do not introduce bias. Robots that 
act like a single user and consistently generate traffic for a single 
variant, however, can create a significant bias. For example, if a 
robot consistently assigned to variant A generates an excessive 
number of clicks, it may cause A to have a statistically 
significantly higher click-through rate than B even if B is 
preferred by human users. 
Although it is difficult to identify all robots in general and there is 
no clear way to evaluate how good a robot detection algorithm 
performs on real data, controlled experiments can provide such a 
unique evaluation function, at least for the robots most critical for 
analysis: those that can skew the results by accepting cookies and 
behave like extreme users. The novel evaluation scheme we 
propose is to use A/A tests, where users are split into Control and 
Treatment, but there is no systematic difference between the two 
versions they are exposed to. The Null hypothesis in an A/A test 
should be rejected about 5% of the time when a 95% confidence 
level is used. If this does not hold true, then there is a bias 
introduced by extreme behavior of users, which are most likely 
robots being assigned to a particular variant. Multiple A/A tests 
must be run in order to have confidence whether biased robots 
exist in the data. However, an interesting observation is that these 
don’t have to be live A/A tests. It is sufficient to run tests post-hoc 
("offline") by re-randomizing users and assigning them to 
Control/Treatment and evaluating the hypothesis that they are the 
same. We are now developing heuristics to detect robots, but it is 
a significant challenge.  

Pitfall 5:  Neglecting to filter robots 

8. AUDITING THE ANALYSES 
It is critical to validate the collection of user behavior data, the 
assignment of users to experiment variants, and the calculation of 
metrics. While running experiments on numerous websites, we 
have encountered problems in every stage of the analysis pipeline 
that have led to incorrect results. This section describes the 
validation steps we developed to detect data quality and analysis 
problems. 

8.1 Logging Test 
After instrumenting the application (e.g., website) to send user 
behavior data to the experimentation system, a logging test should 
be run to validate that the data is being properly recorded. There 
are several ways to do this validation and ideally all should be 
used: 

8.1.1 Compare with system of record 
Most websites already send user behavior data to a reporting 
system or other system of record. Data loss or corruption can 
often be detected by comparing the data received by the 
experimentation system with the system of record. If possible, it is 
best to do a detailed record-by-record comparison between the 
two systems. This allows flagging specific records captured by 
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only one of the systems which can lead to insights if there is a 
collection problem. Otherwise, doing comparisons of aggregate 
values (e.g., received X page views in a particular hour) can still 
provide a high level sanity check. If the experimentation system 
uses data directly from the system of record and there is no 
alternative data collection system, then the other techniques 
discussed below are still applicable. 
It is interesting to point out that in a few cases our audits found 
serious problems with the Microsoft “system of record.” Some of 
these systems have complicated ETL (Extract-Transform-Load) 
processes and have evolved over the years. Our relatively simple 
logging infrastructure has fewer opportunities to lose data. 

8.1.2 Compare with generated data 
For many applications including websites, end user behavior can 
be simulated through software. Comparing the simulated user 
actions with the collected user behavior data is a powerful 
validation technique. Since you know exactly what data should be 
received, it is easy to identify missing, extra or corrupted data. 
This is in contrast to comparing with a system of record which 
itself may have unreliable data. 
One challenge with this technique is mimicking the diversity of 
end users. In the case of a website, end users may be located 
around the world, have different internet connections speeds and 
use different web browsers which may all impact the reliability of 
data collection. Certain applications may also maintain state for 
end users (e.g., shopping cart, order history, wish list, contacts, 
etc.) which can be difficult to mimic. 
Nevertheless, this technique has proven quite useful in practice 
even with very simple simulated data. We have identified several 
data collection bugs since we started using this technique after a 
couple of experiments failed due to incorrectly logged data. 

8.1.3  Look for unexpected patterns 
Typically, there are certain patterns that we expect to find in the 
data. For example, most websites have more traffic during the day 
and on weekdays than they do during the night and on weekends. 
When the patterns observed in the data do not match the expected 
patterns for the application then it casts doubt on the validity of 
the data and raises a flag that a deeper investigation may be 
necessary. Since such patterns are highly application specific, it is 
important to work with the business owners to understand the 
expected behavior. 
Here are some of the patterns we've found useful to look at: 

1. Volume of data over time. One of the most useful patterns 
to look at is the count of observations (e.g., page views) 
received over time. An outage in either the data 
collection system or the application itself will appear as a 
drop in data volume. Also, as noted above, comparing the 
observed data with the pattern expected by the business 
can identify potential data collection problems. 

2. Number of new and repeat users over time. Seeing fewer 
repeat users than expected may indicate a bug where the 
user identifier is regenerated causing repeat users to 
appear as new users. 

3. Ratios of related observations over time. Observations 
such as page views and clicks in a website are typically 
proportional to each other. An abnormal change the ratio 
of such observations is a likely indication of either a data 
collection problem or a robot that only generates data for 
one of the two observations. 

4. Dimensional analysis. All of the above patterns can be 
broken down by dimensional attributes for additional 
insight. For example, breaking down the patterns by the 
web browser used (e.g., IE6, IE7, Firefox 2, Firefox 3, 
etc.) may highlight problems that appear in some 
browsers but not in others. 

8.2 A/A Test 
Distributing end users across the variants of an experiment both 
consistently and without bias are critical requirements for running 
valid controlled experiments. Each user must consistently receive 
the same variant over the course of the experiment in order to 
minimize inconsistent experiences and primacy effects. Each 
variant must be given to an unbiased set of users in order to make 
the comparison between variants valid. If there is a bias where 
users of Internet Explorer 7 are more likely to receive variant A 
than B, for example, the comparison between those variants is 
impacted not only by the difference between the variants but also 
the difference between browser versions. 
While a logging test helps to validate that data is being properly 
recorded, it will not detect problems due to end users being 
incorrectly assigned to variants. An A/A test, however, can be 
used for that purpose. The application code used to assign users to 
variants and execute the appropriate variant must be the same as it 
would if the variants were different. Running an experiment in 
this configuration allows us to perform a number of sanity checks 
to validate that the experimentation apparatus itself is functioning 
properly. 
Verifying that each end user consistently received a single variant 
can be done by injecting variant specific information into the user 
behavior data. For example, if users in variant A should receive 
page X but users in variant B should receive page Y then 
recording the URL (X or Y) in a page view observation allows 
checking whether any user received the wrong page. 
A critical sanity check is to verify that users are divided between 
the variants in the appropriate ratio. For example, if each variant 
is configured to be assigned to 50% of users (recommended to 
maximize the statistical power in A/B tests) then check that the 
actual percent of users assigned to each variant is not statistically 
significantly different from 50%. This check can also be done on 
sub-populations in order to detect an assignment bias. The 
browser bias described above could be detected by performing 
this test on browser versions. In addition to looking at the number 
of distinct users assigned to each variant, we have also found it 
useful to look at the amount of data generated by those users. This 
will detect data collection bugs that impact the variants differently 
(e.g., data collection only being enabled for the Treatments and 
not for the Control). 
Finally, by making the variants identical we know that there 
should be very little difference in the metrics measured for each 
variant during the experiment. Specifically, 95% of metrics should 
have no statistically significantly difference between the variants 
when a 95% confidence interval is used to determine statistical 
significance. If too many (or too few) metrics are statistically 
significantly different between the variants of an A/A test then the 
results are suspect and further investigation is warranted. 

8.3 Offline A/A Test 
As mentioned in Section 7, we initially developed the idea of an 
"offline" A/A test as a mechanism to evaluate robot detection 
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algorithms. However, we have found this technique to be useful in 
uncovering other metric calculation problems as well. 
When we first attempted to validate our results using offline A/A 
tests we found that 30% (as opposed to the expected 5%) of 
metrics where statistically significant. Standard formulas 
underestimated the standard deviation for many of the metrics we 
calculate as discussed in Section 4. 
It is important to note that offline A/A tests identify very different 
problems than normal A/A tests. An offline A/A test finds 
problems with the calculation of metrics whereas a normal A/A 
test detects variant assignment bugs and biased data collection. 

8.4 Rich Instrumentation 
Rich server and client side instrumentation is required for 
comprehensive analysis of online experiments. 

8.4.1 Collect data at referrer and destination points 
To get a full picture of users’ behavior, it is important to collect 
data at all referrer and destination points in online applications. 
For example, if you only record the behavior of users once they 
click through to a secondary page, you will be missing 
information about users who never clicked through in the first 
place. The following example illustrates this concept: 
A team we worked with wanted to test a new version of a Flash-
based navigation component on its homepage. Clickable areas 
within the existing and experimental versions of the Flash 
component served to direct users to content pages deeper within 
the site. The team elected not to instrument the home page or the 
Flash component but to rely solely on page views on destination 
pages (with referrers other than the home page filtered out) to 
measure their OEC of click-throughs from the Flash control to 
destination pages. 
Because we were limited to destination page view data with 
referrer information, we only knew the performance of the old and 
new variants conditioned on the event that the user clicked on the 
Flash control at all. The problem here is that some users may 
dislike one of the versions of the Flash control so much that they 
never click at all. Lacking a page view observation on the home 
page, we could not get a complete record of user behavior. 
Rich server and client side instrumentation is required for 
comprehensive analysis of online experiments. 

8.4.2 Over-instrumenting is better than under-
instrumenting 
Collecting more observations than required for computing your 
metrics and OEC can help identify implementation bugs that can 
bias experiment results. For example, by collecting server side 
page request observations we were able to identify an issue in 
which FireFox was requesting each page twice due to an IMG tag 
with an empty SRC attribute on the page. 
In contrast to our advice to collect rich observational data, we do 
not advocate the reporting of long lists of metrics. Providing too 
many results allows people to cherry pick the ones that support 
their favored outcome while ignoring the results that do not 
support it. Remember that when using a 95% confidence level, 
one out of twenty results will show significance due to random 
chance. 

Pitfall 6:  Failing to validate each step of the analysis 
pipeline and the OEC components 

9. Control is Crucial 
It is all too easy to allow the variants you are comparing to differ 
in some way besides the feature you want to test. For example, if 
you are using client side redirect through JavaScript to show the 
content of the Treatment and not the Control, you may have an 
extra delay on in the Treatment. This will likely cause a decrease 
in click-through rate and other metrics. Of course any experiment 
where there is a redirect or other delay in one variant and not the 
others will be biased. Our recommendation is to choose an 
approach to experimentation that does not require a redirect, but if 
you need to use that method you should include the redirect in all 
variants you are testing. 
Another common mistake experimenters make is when a site 
conducting an experiment has frequent updates (e.g. news or other 
content) and these updates are not made equally to all variants. 
One experiment we ran involved a test of headline placement on 
the MSN homepage. The headlines being shown were intended to 
be same in Treatment and Control, but in a different order.  
However, one of the headlines was different for a seven hour 
period. A graph of the hourly clickthrough rate (CTR) for two 
days of this experiment is given in Figure X with the red box 
highlighting the seven hour period. 

 
Figure 4: Click-through Rate for Video module 

 
The Treatment was significantly better than the Control before 
taking this seven hour period out of the analysis but there was no 
difference once it was removed. 

Pitfall 7:  Forgetting to control for all differences, and 
assuming that humans can keep the variants in sync 

10. SUMMARY 
Good judgment comes from experience, and 
and a lot of that comes from bad judgment.  
 -- Will Rogers 

Controlled experiments have had profound influence on multiple 
fields, including medicine, agriculture, manufacturing, and 
advertising. Their widespread adoption in software development 
of web sites and services is just beginning. We reviewed pitfalls 
we have seen in running experiments at Microsoft over the last 
three years since the Experimentation Platform team was formed. 
We started off with pitfall 1 related to the most important decision 
when running an experiment: the Overall Evaluation Criterion. 
Too many OECs that we have seen fail our suggested litmus test. 
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While the statistics can be computed correctly, one needs to ask 
whether the right metric is being optimized, especially if there are 
plans to run a series of experiments to optimize the OEC. Pitfall 2 
warns about computing confidence intervals for percent effects 
and how to combine metrics. Pitfall 3 warns about using standard 
statistical formulas for computing variances; we switched to 
Bootstrap estimates when we realized the problem. Pitfall 4 warns 
that without more complicated analyses, it is too easy to reach 
incorrect conclusions because of Simpson’s paradox; other well-
intentioned sampling techniques can likewise lead to incorrect 
conclusions. Pitfall 5 warns about robots, which have dramatic 
impact on results sometimes. Pitfalls 6 and 7 highlight the 
importance of audits and controlling for all differences. 
Knowing these pitfalls can increase the trust in controlled 
experiments and help organizations build better software by 
making data-driven decisions.  
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