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Abstract

Controlled experiment has been used widely to support data driven decision making
for on-line businesses. By applying appropriate randomization of the experiment
units, causal inference can be established. The choice of the experiment unit for
randomization can vary. User and page view are two mostly used units. Moreover,
the analysis unit is sometimes different from the experiment unit. There are pros
and cons in choosing which experiment unit to use and the choice affects the down-
stream statistical analysis. Generally for page level metrics, randomization by page
will have an edge in power due to variance reduction. In this paper, we compare
the two experiment units and provide a method to correctly analyze a page view
randomization experiment in a two layer randomization framework.
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1. Introduction

For centuries people have been looking for ways to evaluate ideas. Controlled experi-
ment, also called randomization test or A/B test has long established its importance
as the methodology to establish a causal relationship. This paper will be focused
on controlled experiment on the web. An obvious difference controlled experiment
on the web and other types of controlled experiment (for example, clinical trials)
is that it is easy and also with low cost to collect data on web. In other words,
web provides an unprecedented opportunity for us to use the power of controlled
experiment to test and evaluate ideas quickly. It is our strong belief that unlock
the huge data on the web and use the right methodology to analyze it is the key
toward a data driven philosophy, and controlled experiment has successfully set a
standard in the industry. There are already many publications in the literature
on controlled experiment. For a good and thorough survey on how to run web
experiments, see Kohavi, Longbotham, Sommerfield & Henne (2009). Most of the
works in the literature are focused on practical issues and best practices. To the
author’s knowledge few of them have been contributed on the underlying statistical
methods. Part of the reason is that the related statistical method — the widely
used two sample t-test are so well known, under i.i.d assumptions. In this paper,
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we focus on the randomization step itself, and show how to analyze a randomized
experiment where page view is used to randomize traffic.

We will be consistently using the following notations and assumptions through
out this paper. Let n be the total number of unique users. Let Xi,j be the per-
page measurement (e.g. number of clicks on the page) on user i’s jth page view
and Xi,j has mean µi and variance σ2i . Denote Ki the total number of page views
from user i and N =

∑n
i=1Ki be the total number of page views. We assume for

any i, Xi,j , j = 1, . . . ,Ki are i.i.d. and uniformly bounded above by some finite
constant. In particular, we allow (µi, σ

2
i ) to differ from user to user. We also

assume Ki, i = 1, . . . , n are i.i.d. and independent of (µi, σ
2
i ), i = 1, . . . , n. This last

assumption is for the purpose of theoretical investigation and need to be checked
case by case in practice. We have checked this assumption for some key metrics
of web experiments using empirical data and this assumption is reasonable. In a
randomized experiment, we call the unit on which randomization is performed the
randomization unit. In analysis phase, a metric will be naturally associated with an
unit, which we call it analysis unit. For instance, a user level metric such as clicks
per user is associated with user as the analysis unit while page view level metrics
such as click through rate is associated with page view.

The following paper is organized as follows. In Section 2, we first briefly review
the case where user is used as the randomization unit. In particular we are interested
in page view level metrics and show how delta method should be used. We also give
a formula for the bias introduced should we fail to use delta method. In Section 3,
we shift the gear to the case that the randomization unit is page view. We present
an asymptotically consistent variance formula of page view level metrics under a
two layer randomization framework where a group of users are first recruited and
then their page views are randomized into treatment and control. Section 4 presents
simulation results. In Section 5, we discuss the pros and cons of using page view as
randomization unit. We suggested extensions and concludes.

2. User as Randomization Unit

In this section we focus on the case where the randomization unit is user. In practice
users are identified with their login ids or simply cookies stored by the browser. A
detailed discussion of user tracking is far beyond the scope of this paper. For this
paper, we assume user can be identified perfectly.

Traditional applications of user randomized experiment is to study movement of
user level metrics. From a statistical perspective, this is a vanilla application of two
sample t-test to test the null hypothesis that treatment group and control group
are the same under the i.i.d assumption. To be more specific, a user level metric is
a sample mean of user level measurements. Since users are randomized into control
and treatment group, it is safe to assume user level measurements are independent
and identically distributed. Under the hierarchical model in Section 1, this means
we draw (µi, σ

2
i ) independently for each user and then user level measurements for

that particular user is drawn from corresponding distribution. Denote the user
level metrics in control and treatment by X̃T and X̃C , it is clear that they are
independent. By central limit theorem,

X̃T − X̃C√
Var{X̃T − X̃C}

→ Z, (1)



where Z is standard normal. The two sample t-test is to replace Var{X̃T − X̃C} by
its estimate. In this particular case since X̃T and X̃C independent, Var{X̃T−X̃C} =
VarX̃T + VarX̃C and both terms in the right hand side can be simply estimated
via sample variances. Also, for web experiment, n is large (much much larger than
most applications of two sample t-test). Therefore we might as well treat t-statistics
as standard normal.

For page view level metrics, (1) still holds when X̃T and X̃C are replaced by page
view level metrics XT and XC . However, Var{XT − XC} can not be estimated
by sample variances. Delta method is needed for variance estimation of VarXg,
g = T,C; see Section 2.1. Moreover, when randomization unit is not user, XT and
XC are not even independent and we need to estimate Var{XT − XC} directly.
This will be our topic in Section 3.

2.1 Page Level Metrics and Delta Method

Under our hierarchical model introduced in Section 1, a page level metric can be
denoted by:

X =

∑n
i=1

∑Ki
j=1Xi,j

N
.

When user is the randomization unit, XT and XC are independent and Var{XT −
XC} = VarXT +VarXC . Therefore we only need to focus on estimating VarX. To
this end, it is tempting to treat page level metrics Xi,j , j = 1, . . . ,Ki, i = 1, . . . , n,
as i.i.d. and X under this assumption is an average of i.i.d. samples so the variance
of X can be easily estimated by

1

N2

( n∑
i=1

Ki∑
j=1

(Xi,j −X)2
)
.

This estimator, which we call the naive estimator, is not consistent because in our
model the user effect (µi, σ

2
i ) are also a random sample from a distribution and page

view level measurements Xi,j of the same user are only independent conditioned on
(µi, σ

2
i ). Nevertheless, it is true in our model that the user level measurement

(
∑Ki

i=1Xi,j ,Ki), i = 1, . . . , n are i.i.d. By letting Yi =
∑Ki

i=1Xi,j and express X as∑n
i=1 Yi/

∑n
i=1Ki, it is then a straightforward application of the delta method to

get an asymptotically consistent estimator for VarX:

1

n

{ 1

ÊKi
2 V̂arYi +

ÊYi
2

ÊKi
4 V̂arKi − 2

ÊYi
ÊKi

3
̂Cov(Yi,Ki)

}
where these “hatted” quantities are the sample mean, variance or covariance.

For asymptotic analysis, we will let n → ∞ (so N → ∞ a.s.). To normalize
the naive estimator and delta method estimator, we multiply them by n so that
they will converge to some nonzero numbers. We introduce the normalized naive
estimator

σ̂2n = n
1

N2

( n∑
i=1

Ki∑
j=1

(Xi,j −X)2
)

(2)



and the normalized delta method estimator

σ̂2d =
1

ÊKi
2 V̂arYi +

ÊYi
2

ÊKi
4 V̂arKi − 2

ÊYi
ÊKi

3
̂Cov(Yi,Ki). (3)

A natural question to ask is how biased is the naive estimator σ̂2n relative to the
true normalized variance nVarX. This is answered in the following theorem.

Theorem 1. Let C =
EK2

i
(EKi)2

. Then, as n→∞,

nVarX → CVar(µi) + E(σ2i )/E(Ki) (4)

σ̂2d → CVar(µi) + E(σ2i )/E(Ki) (5)

σ̂2n →
1

E(Ki)
(Var(µi) + E(σ2i )). (6)

Let ρ := Var(µi)/(Var(µi) + E(σ2i )) be the user effect coefficient(variances that
explained by between user variation), then

nVar(X)

σ̂2n
→ (E(Ki)C − 1)ρ+ 1. (7)

The convergence in (5) and (6) are in probability.

Proof of Theorem 1. (5) follows directly from the property of the delta method. To
prove (4), we first apply conditional variance formula by conditioning on (µi, σ

2
i ,Ki,

i = 1, . . . , n). This gives

VarX = Var
(
E
(∑n

i=1

∑Ki
j=1Xi,j

N

∣∣∣Ki, µi, σ
2
i , i = 1, . . . , n

))
+E
(
Var

(∑n
i=1

∑Ki
j=1Xi,j

N

∣∣∣Ki, µi, σ
2
i , i = 1, . . . , n

))
=Var

( 1

N

n∑
i=1

Kiµi

)
+ E

( 1

N2

n∑
i=1

Kiσ
2
i

)
.

Let wi = Ki/
∑n

i=1Ki = Ki/N . Since Ki independent of (µi, σ
2
i ) and N/n→ EKi

as n → ∞, we can further simplify the right hand. First, by applying iterative
expectation(frist conditioning on w1, . . . , wn), we have

nE
( 1

N2

n∑
i=1

Kiσ
2
i

)
=

n∑
i=1

E
( n
N
wiσ

2
i

)
=

1

EKi
(

n∑
i=1

wi)Eσ2i =
Eσ2i
EKi

(8)

where the second equality is by bounded convergence theorem(since N/n → EKi

and
∑
wiσ

2
i bounded) and the last equation is from

∑
wi = 1. Since (µi, σ

2
i ) are

i.i.d.,

nVar(
n∑

i=1

wiµi) = nE(Var(
n∑

i=1

wiµi|w1, . . . , wn)) + nVar(E(

n∑
i=1

wiµi|w1, . . . , wn))

(9)

= nE(

n∑
i=1

w2
iVar(µi)) + nVar((

n∑
i=1

wi)Eµi) = nE(

n∑
i=1

w2
i )Var(µi) (10)



where the last equality is from the fact that the second term is 0. By simple

algebra, n
∑n

i=1w
2
i =

K2
i

Ki×Ki
, where K2

i and Ki are sample mean of K2
i and Ki,

respectively. By strong law of large number, K2
i → EK2

i a.s., Ki → EKi a.s.,

therefore n
∑n

i=1w
2
i →

EK2
i

(EKi)2
a.s. Combine this result with (8) and (10), we’ve

proved (4).

We now turn to the limit of σ̂2n.

σ̂2n = n
1

N2

( n∑
i=1

Ki∑
j=1

(Xi,j −X)2
)

=
n

N2

{ n∑
i=1

Ki∑
j=1

X2
i,j −NX

2
}

→ lim
n→∞

( n2
N2

)
E
( Ki∑
j=1

X2
i,j

)
− lim

n→∞

( n
N

)
(Eµi)2.

The last limit is from (1/n)
∑Ki

j=1X
2
i,j → E

(∑Ki
j=1X

2
i,j

)
and X → Eµi a.s., both

by the strong law of large number. By N/n → EKi, and also E
(∑Ki

j=1X
2
i,j

)
=

EKiEX2
i,j = EKi(Eµ2i + Eσ2i ), (6) follows.

(4) in Theorem 1 shows the variance of a page level metrics can be decomposed
into two parts. The first part CVarµi is contributed by user effect (µi, σ

2
i ). We call

this between user variance. The second part E(σ2i )/E(Ki) represents the variance
not explained by user effect and we might call this within user variance. When
EKi large, note that C = EK2

i /(EKi)
2 ≥ 1 by Jensen’s inequality, the between

user variance will dominate. This is intuitively easy to understand since within user
variance decrease to 0 as each user has more and more page views.

In empirical data, we do see between user variance contributed a large propor-
tion of the total variance, especially for those experiments ran for a few weeks. This
observation motivated us to use page view as randomization unit for some experi-
ments if the key metrics we are interested in are at page view level. A caveat here
is that not all experiment can be done with page view level randomization, mainly
due to the inconsistent user experience. We leave the discussion later in Section 5
and only focus on theoretical property in the next section.

3. Page View as Randomization Unit

3.1 A Two Layer Randomization Framework

Suppose all page views are randomly divided into different groups. By all page views
we mean page views from all users that could show up. Under this framework, it
is from the typical marginalization argument that we can treat page view level
measurement as i.i.d. i.e., there is no user effect in the analysis because the page
views are drawn from all users and no user selection variance is induced in this
randomization scheme. Since page view level measurements are i.i.d., statistical
analysis for page view level metrics is therefore straightforward.

The case that is of most interest is the following. We first randomly selected n
user from all the users that could show up. n is usually only a small percentage of
the total number M of users that could show up in the universe. Let us assume M
is infinity and hence assume users are drawn independently. All page views from
these n users are then randomly split into control and treatment. The goal is to
make inference by comparing certain metrics in control and treatment. There are



at least two reasons that we favor this two layer randomization framework over the
one layer framework mentioned in the previous paragraph. One is that we want
to run more than one experiments simultaneously and for a particular page view
randomization experiment we only allow part of the whole traffic and reserve other
traffic for user randomization experiment. Another reason is that we might not
want all users to experience the page level randomization experience, which could
potentially be inconsistent or non-sticky. Section 5 covers this in more detail.

An obvious difference between page view randomization and user randomization
is the availability of many user level metrics. If the randomization unit is page
view, first of all, page views per unique user does not make any sense anymore.
Other metrics that are often used in search experimentation that will be unavailable
include sessions per unique user, queries per unique user, page loading time per
unique users, etc. However, as we will see in Section 3.2, the strength of using page
view as randomization unit is the improvement in variance reduction for page level
metrics, hence a boost in statistical power.

3.2 Page Level Metrics

Denote a page view level metric as Xr =
∑n

i=1

∑Ki
(r)

j=1 X
(r)
i,j /Nr where r = 1, 2 stands

for control and treatment. In Section 2 , we never considered the variance of both
control and treatment together. This is because the control and treatment groups
have different users and since randomization is based on user, the metrics of the two
groups are naturally independent. As a result the variance of the difference of the
metrics is simply the sum of the two variances of the same metric in each group.
What make things more complicated here is that under the two layer randomization
framework, control and treatment share the same group of n users. It is now the
page view, not the user that is randomized into two groups. Due to this very fact,
X1 and X2 are no longer independent.

What we need is an asymptotically unbiased estimator for Var(X1−X2) when
the page views are split into control and treatment with fixed weights. Under the

same hierarchical model, conditioned on Ki, K
(r)
i follows binomial(Ki, p) distribu-

tion where p depends on the weights of treatment and control. If we only consider
one group, say control. Then the only difference between this framework and that

of Section 2 is that now K
(r)
i follows from a different distribution(from Ki). But

note that all the results in Section 2 does not depend on the distribution of Ki.
Therefore all results in Section 2 directly apply on X1 (or X2). Particularly,we
have the following proposition for free.

Proposition 2. Let w
(r)
i = K

(r)
i /

∑n
i=1K

(r)
i and Cr =

E(K(r)
i )2

(EK(r)
i )2

. Then for r = 1, 2

σ̂2nr →
1

E(K
(r)
i )

(Var(µi) + E(σ2i )) (11)

σ̂2dr → CrVar(µi) + E(σ2i )/E(K
(r)
i ). (12)

What Proposition 2 says is exactly that if we apply naive formula or delta
method formula to one group, we will get asymptotically unbiased estimator for the
right hand side of (11) and (12), respectively.

To analyze Var(X1 −X2), by applying conditioned variance formula as in the



proof of Theorem 1,

Var(X1 −X2) = Var
(∑n

i=1

∑K
(1)
i

j=1 X
(1)
i,j

N1
−
∑n

i=1

∑K
(2)
i

j=1 X
(2)
i,j

N2

)
=Var

(
E
(∑n

i=1

∑K
(1)
i

j=1 X
(1)
i,j

N1
−
∑n

i=1

∑K
(2)
i

j=1 X
(2)
i,j

N2
|K(r)

i , µ
(r)
i , σ

(r)
i , i = 1, . . . , n, r = 1, 2)

))
+E
(
Var

(∑n
i=1

∑K
(1)
i

j=1 X
(1)
i,j

N2
1

−
∑n

i=1

∑K
(2)
i

j=1 X
(2)
i,j

N2
2

|K(r)
i , µ

(r)
i , σ

(r)
i , i = 1, . . . , n, r = 1, 2

))
=Var

( 1

N1

n∑
i=1

K
(1)
i µi −

1

N2

n∑
i=1

K
(2)
i µi

)
+ E

( 1

N2
1

n∑
i=1

K
(1)
i σ2i +

1

N2
2

n∑
i=1

K
(2)
i σ2i

)
(13)

By using the short hand notation w
(r)
i , we can simplify nVar(X1 −X2) into

nVar
( n∑
i=1

(w
(1)
i − w

(2)
i )µi

)
+ nE

( n∑
i=1

(w
(1)
i /N1 + w

(2)
i /N2)σ

2
i

)
. (14)

Comparing to (8), we see

nE
( n∑
i=1

(w
(1)
i /N1 + w

(2)
i /N2)σ

2
i

)
→ Eσ2i

EK(1)
i

+
Eσ2i
EK(2)

i

(15)

where the last term is because K
(1)
i has the same distribution as K

(2)
i .

By using conditional variance formula for another time and following the exact

same argument as in (10) (replace wi by (w
(1)
i − w

(2)
i )), we have

nVar
( n∑
i=1

(w
(1)
i − w

(2)
i )µi

)
= nE

( n∑
i=1

(w
(1)
i − w

(2)
i )2Varµi

)
=
(
nE
( n∑
i=1

(w
(1)
i )2

)
+ nE

( n∑
i=1

(w
(2)
i )2

)
− 2nE

( n∑
i=1

w
(1)
i w

(2)
i

))
Varµi. (16)

In the proof of Theorem 1, we proved nE
(∑n

i=1w
2
i

)
→ EK2

i
(EKi)2

= C. Same

argument can be extended to prove the following:

nE
( n∑
i=1

(w
(r)
i )2

)
→

E(K
(r)
i )2

(EK(r)
i )2

= Cr, r = 1, 2

nE
( n∑
i=1

(w
(1)
i w

(2)
i )
)
→

E(K
(1)
i K

(2)
i )

EK(1)
i EK(2)

i

:= Cx.

Plugging into (16) entails

nVar
( n∑
i=1

(w
(1)
i − w

(2)
i )µi

)
→ (C1 + C2 − 2Cx)Varµi. (17)

Combining this with (15), we have proved the following.



Proposition 3. Under the framework of this section, let Cr =
E(K(r)

i )2

(EK(r)
i )2

and Cx =

E(K(1)
i K

(2)
i )

EK(1)
i EK(2)

i

. As n→∞,

nVar(X1 −X2)→ (C1 + C2 − 2Cx)Varµi +
∑
r=1,2

Eσ2i
EK(r)

i

. (18)

The remaining piece is to figure out what is C1+C2−Cx. The next result shows
C1 + C2 − 2Cx =

∑
r=1,2

1

EK(r)
i

.

Proposition 4. Suppose control has weight p and treatment weight q.

C1 + C2 − 2Cx =
1

EK(1)
i

+
1

EK(2)
i

. (19)

Therefore,

nVar(X1 −X2)→
( 1

EK(1)
i

+
1

EK(2)
i

)(
Varµi + Eσ2i

)
. (20)

Proof of Proposition 4. (20) follows from Proposition 3 and (19). Here we only

prove (19). To see this, note thatKi = K
(1)
i +K

(2)
i andK

(1)
i followsBinomial(Ki, p).

EK(1)
i = pEKi

EK(2)
i = qEKi

E
(
(K

(1)
i )2

)
= pqEKi + p2EK2

i

E
(
(K

(2)
i )2

)
= pqEKi + q2EK2

i

EK(1)
i K

(2)
i = pEK2

i − pqEKi − p2EK2
i = pqEK2

i − pqEKi.

By definition,

C1 + C2 − 2Cx =
E(K

(1)
i )2

(EK(1)
i )2

+
E(K

(2)
i )2

(EK(2)
i )2

− 2
pEK2

i − pqEKi − p2EK2
i = pqEK2

i − pqEKi

EK(1)
i EK(2)

i

=
1

(EKi)2

( 1

p2
E
(
(K

(1)
i )2

)
+

1

q2
E
(
(K

(2)
i )2

)
− 2

pq
EK(1)

i K
(2)
i

)
= (q/p+ p/q + 2)

1

EKi
= (1/p+ 1/q)

1

EKi
.

On the other hand,

1

EK(1)
i

+
1

EK(2)
i

= (1/p+ 1/q)
1

EKi
.

Hence C1 + C2 − 2Cx = 1

EK(1)
i

+ 1

EK(2)
i

.

We can now summarize the result in this section into the following theorem.

Theorem 5. Under the framework of this section, as n→∞

nVar(X1 −X2)→
( 1

EK(1)
i

+
1

EK(2)
i

)(
Varµi + Eσ2i

)
.

Moreover σ̂2n1 + σ̂2n2 is an asymptotically unbiased estimator for nVar(X1 −X2).

In the following of this paper, we denote σ̂2n1+ σ̂2n2 as Formula P, where P stands
for “randomization by page view”.



4. Simulation and Empirical Results

We use page click rate (PCR) as example to verify Formula P and show how it
performs. We also compare the variance of PCR from a randomization by user ex-
periment to that from a page view randomization experiment to empirically see the
variance reduction from page view randomization. Like click through rate (CTR),
page click rate is a page based metric focusing on users’ click engagement on a page.
The difference between PCR and CTR is that the page view level measurement of
CTR is the total number of clicks on the page for a page view, while for PCR it is a
binary number indicating whether a page view generates any click. For a fixed n, we
first simulate pi, i = 1, . . . , n, the click through rate for a user from a Beta(0.1, 0.5)
distribution(see Figure 1 to get a sense of the shape of the distribution). We then
simulate the total number of page view Ki from some distribution, which we can

vary, and then use binomial distribution to split Ki into K
(1)
i and K

(2)
i . For user

i, we then simulate
∑K

(r)
i

j=1 X
(r)
i,j from Binomial(pi). In each simulation run, we

record X1 −X2, as well as σ̂2n, Ĉ1,Ĉ2, Ĉx, ÊK(r)
i . 1 We repeat this step for 1000

times. After the 1000 simulation run, we can estimate Var(X1 −X2) from the

sample variances of the 1000 realizations of X1 −X2, which we denote by σ̂2sim for
the normalized variances, which is n times the sample variance of X1 − X2. We
also use bootstrap simulation(100 subsamples) to get an estimate of the standard

deviation of the normalized variance estimator σ̂2sim. On the other hand, for each
of these 1000 simulation run, we can apply Formula P to estimate the normalized
variance. We then compare the distribution of these 1000 estimates from Formula

P to the 95% confidence interval (σ̂2sim − 1.96SD(σ̂2sim), σ̂2sim + 1.96SD(σ̂2sim)). In
all the simulation, we fixed n = 100, 000 and p = q = 0.5.

Distribution of Beta(0.1,0.5)

p

D
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Figure 1: The histogram of pi for n = 100, 000 users from a Beta(0.1, 0.5) distri-
bution.

1For σ̂2
n, Ĉ1, Ĉ2, ÊK(r)

i , we can actually calculate from both control and treatment and then
take the average to get a more accurate estimate.



4.1 Performance of Formula P

We first use Poisson(6) to generate Ki. The plot on the left in Figure 2 shows that

C1+C2−2Cx is indeed close to 1/EK(1)
i +1/EK(2)

i . The ratio of the two is normally
distributed and concentrated around 1. The plot on the right shows all the 1000
estimates from Formula P are within the bootstrapped 95% confidence interval.
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Figure 2: Ki from Poisson(6) distribution. Left: Histogram of (Ĉ1 − Ĉx)ÊK(1)
i .

Right: Histogram of the 1000 estimates from Formula P and the 95% confidence
interval form bootstrap. The two dashed lines are lower and upper bound of the
confidence interval and the solid line is the sample variance of 1000 realization of
X1 −X2 multiplied by n
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Figure 3: Ki = 5. Left: Histogram of (Ĉ1 − Ĉx)ÊK(1)
i . Right: Histogram of the

1000 estimates from Formula P and the 95% confidence interval form bootstrap.
The two dashed lines are lower and upper bound of the confidence interval and the
solid line is the sample variance of 1000 realization of X1 −X2 multiplied by n

In Figure 3, we fixed Ki = 5, i = 1, . . . , n. The simulation shows similar
performance of Formula P.



4.2 Variance Reduction

In this simulation study, we compare the variance of PCR from a user randomized
experiment with a page view randomized experiment. pi follows from the same Beta
distribution as in the previous section. We simulate Ki in two steps. First, simulate
number of sessions of user i from a Poisson(2) distribution, then for each session,
simulate number of page views from Poisson(3). Ki for user i is the sum of all
page views from all sessions. To simulate a user randomization experiment, n users
are then randomized into control and treatment group. To simulate a page view
randomized experiment, for each user, Ki page views are randomized into control
and treatment groups. For each cases, we run 1000 simulations just as we did in
the previous section. Figure 4 shows the results of user randomization and page
view randomization together. We can see that the variances when we randomize by
user is around 0.64 while the variance when randomization is on page view is about
0.092. Therefore, there is a variance reduction at a factor of 7!
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Figure 4: Randomization by user vs. randomization by page view.

5. Conclusion

In this paper, we have provided a way to analyze page view level metrics from an
experiment with page view as the randomization unit, under a two layer randomiza-
tion framework. In particular, we presented a formula for variance estimation and
compare the variance from a page view randomized experiment to corresponding
user randomized experiment and showed that page view randomized experiment
leads to smaller variance for the same page view level metric.

Aside from theoretical property, in practice the more important topic is how
do we choose randomization unit between user and page view. The most apparent
distinction between the two is whether the user experience is consistent. If random-
ization is applied on page view, then by design a same user will receive both control
and treatment experience. This non-sticky experience might be problematic and
even a bad experiment design if the change between treatment and control experi-
ence is so large that swapping between them will cause huge user confusion. There
are also many cases that one expects certain treatment effect that will require a



user to receive a consistent experience for a period of time for the effect to show
up. Whenever consistent user experience is a must, randomization unit should be
no finer than user level. Also, we cannot track any user level metrics if randomize
by page view. For example, many loyalty metrics such as number of visits per user
is at user level. Page view level randomization, on the other hand, still provide an
intriguing alternative to user level randomization. As we have shown in this paper,
it has an advantage in terms of statistical power on page level metrics due to the
variance reduction. There are also cases when we want initial data collection for
certain features that we do not want user to consistently experience. As an example,
one might want to intentionally slowing down the page loading to study how the
page abandon rate will change.

There are a few other alternatives besides user and page. One of them is to
randomize by visits. This will guarantee that same user will have consistent ex-
perience within each visit, while still gains some variance reduction over pure user
randomization by exposing the same user to both treatment and control on different
visits. Another choice appeared in the literature was user-day randomization; see
Tang, Agarwal, O’Brien & Meyer (2010). We mark the theoretical and empirical
investigation of these different randomization units as future work.
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